

Verificação da Estabilidade Físico-Química de Dipirona Sódica sob Influência da Luz e Temperatura

Ana Paula Martins dos Santos¹, Emanuel Carlos Rodrigues¹

¹Instituto Federal de Educação, Ciência e Tecnologia de São Paulo, Câmpus Barretos. martins.paula@aluno.ifsp.edu.br

Palavras-chave: Fármaco, Analgésico, Análise, Degradação.

Introdução

A estabilidade de um medicamento está relacionada com o tempo no qual ele mantém as propriedades iniciais desde a sua fabricação, dentro de condições específicas de armazenamento. Existem diferentes tipos de estabilidades a serem consideradas, sendo elas: química, física, microbiológica, terapêutica e toxicológica (WANCZINSKI; SANCHES; WOLF, 2007).

A estabilidade físico-química de um fármaco está relacionada à capacidade de manter suas características moleculares, pureza e capacidade de ação. Fatores como a luz e a temperatura podem afetar a estabilidade de um medicamento (MIRCO; ROCHA, 2015).

A dipirona é um dos analgésicos mais vendidos no Brasil, uma vez que é de fácil acesso, baixo custo e isento de prescrição médica (GUIMARÃES et al., 2019).

O armazenamento adequado tem um papel fundamental para manter a eficácia de um fármaco; porém quando armazenado nas residências, a dipirona pode sofrer um aumento considerável de temperatura e/ou de incidência de luz. Esta exposição ao calor e à luz pode provocar a sua degradação.

Assim, esse projeto visa descobrir como essas condições podem influenciar na estabilidade de dipirona sódica comercial.

Objetivos

Verificar a estabilidade físico-química de comprimidos de dipirona sódica em relação à luz e temperatura.

Objetivos Específicos

Realizar análises nos comprimidos após 3 e 6 meses de armazenamento sob condição de temperatura (de 41°C a 51°C), bem como sua exposição à luz solar, sendo elas: doseamento do princípio ativo; verificação de produtos de degradação utilizando espectrofotometria de absorção molecular de luz ultravioleta e visível (UV/Vis).

Material e Métodos

As amostras da dipirona comercial (três lotes de medicamento de referência e três lotes de medicamento genérico) foram obtidas em farmácias locais de Barretos-SP.

Foi realizada análise de doseamento inicial conforme a Farmacopéia Brasileira (BRASIL, 2010). Em seguida, parte das amostras foi submetida às diferentes condições experimentais de temperatura (estufa com variação de temperatura de 41 a 51 °C) durante 3 e 6 meses. A outra fração das amostras mantida em suas embalagens primárias e colocadas em aquário de vidro transparente em local de alta intensidade de luz solar durante todo o dia. As análises de varredura por espectrofotometria na região do visível e ultravioleta foram obtidas em equipamento Thermo Scientific™ GENESYS™ 10S Uv/Vis conforme prescreve a Farmacopéia Brasileira. Todas as análises foram realizadas em triplicata.

Resultados e Discussão

A tabela 1 apresenta os resultados obtidos nas análises de doseamento das amostras iniciais, após 3 e 6 meses de exposição à luz solar.

TABELA 1: Teor de dipirona sódica inicial, após 3 meses e 6 meses de exposição solar (média ± desvio padrão).

Amostra	Teor Inicial da dipirona sódica (mg)	Após 3meses de exposição solar (mg)	Após 6 meses de exposição solar (mg)
Referência 1	548,6 ± 3,1	$509,0 \pm 6,3$	454,2 ± 23,5
Referência 2	$496,2 \pm 11,9$	$466,9 \pm 20,5$	$408,3 \pm 5,9$
Referência 3	$538,7 \pm 26,0$	$502,3 \pm 3,2$	$429,7 \pm 9,9$
Genérico 1	$567,8 \pm 22,2$	$541,9 \pm 10,4$	467,5 ± 10,9
Generico2	$543,2 \pm 14,6$	514,9 ±10,0	513,3 ±10,1
Genérico 3	$544,0 \pm 8,5$	$540,1 \pm 6,0$	$454,4 \pm 9,1$

Os resultados permitem observar a diminuição nos teores de dipirona sódica em todas as amostras após 3 e 6 meses de exposição à luz solar. A maior dosagem do princípio ativo por comprimido foi apresentada pelo medicamento Genérico 1, com 567,8 mg de dipirona sódica por comprimido. Um destaque para a amostra Referência 2 que apresentou inicial média de 496,2 mg massa dipirona/comprimido, abaixo dos 500 anunciados em sua embalagem e bula. A maior variação do teor de dipirona sódica em relação ao doseamento inicial das amostras ocorreu no medicamento Referência 1, com perda de 7,22% (após 3 meses) e Referência 3, com perda de 20,23% (após 6 meses). As amostras Genéricas 1, 2 e 3 apresentaram, inicialmente e após os tratamentos descritos, teores acima dos 500 sódica/comprimido mg de dipirona anunciados em suas respectivas bulas. As menores variações foram do medicamento Genérico 3, com 0,72% (após 3 meses) e Genérico 2, com perda de 5,50 % (após 6 meses);

A tabela 2 apresenta o teor de dipirona sódica inicial, após 3 e 6 meses de acondicionamento em estufa.

TABELA 2: teor de dipirona sódica inicial, após 3 e 6 meses de acondicionamento em estufa (média ± desvio padrão).

Amostra	Teor Inicial da dipirona sódica (mg)	Após 3 meses em estufa (mg)	Após 6 meses em estufa (mg)
Referência 1	$548,6 \pm 3,1$	$492,7 \pm 3,4$	$440,3 \pm 7,3$
Referência 2	496,2 ± 11,9	$480,0 \pm 4,1$	452,1 ± 22,7
Referência 3	$538,7 \pm 26,0$	$489,2 \pm 16,8$	$430,6 \pm 20,3$
Genérico 1	$567,8 \pm 22,2$	$545,0 \pm 20,5$	$476,6 \pm 25,9$
Generico2	$543,2 \pm 14,6$	$535,3 \pm 10,3$	$490,8 \pm 20,4$
Genérico 3	$544,0 \pm 8,5$	$523,1 \pm 32,0$	$503,9 \pm 5,3$

Os resultados da tabela 2 permitem verificar que as maiores perdas do princípio ativo foram nas amostras Referência 1, com

10,19% de perda após 3 meses de exposição ao calor, e Referência 3, com 20,07 % após 6 meses de estufa.

A figura 1 apresenta o espectro de absorção molecular de uma das amostras iniciais, que permite observar que a região do espectro entre 200 e 400 nm é a que apresenta maior absorbância, incluindo os comprimentos de onda (λ) característicos da transição dos elétrons não ligantes para orbital molecular sigma antiligante, de 208 nm e transições dos elétrons de orbitais moleculares pi (π) ligantes para orbitais pi (π *) antiligantes, de 220, 230 e 263 nm (HABEKOST, 2018).

As análises espectrofotométricas ainda estão sendo realizadas para todas as amostras.

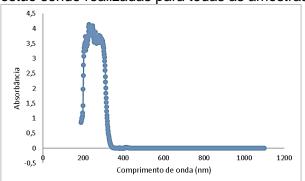


FIGURA 1: espectro de absorção molecular na região do UV/Vis de uma amostra de dipirona sódica.

Conclusões

As análises realizadas permitiram verificar que houve influência da temperatura e da luz solar no teor de dipirona sódica nos diferentes medicamentos analisados, uma vez que diminuíram os valores das quantidades de massa do princípio ativo em todas as amostras analisadas.

Agradecimentos

Ao Programa Institucional de Bolsas de Iniciação Científica e Tecnológica do Instituto Federal de Educação, Ciência e Tecnologia de São Paulo (PIBIFSP).

Referências Bibliográficas

BRASIL. Ministério da Saúde. Agência Nacional de Vigilância Sanitária (ANVISA). **Farmacopeia Brasileira**, Brasília, v.1, 5ª edição, 2010.

GUIMARÃES, A. C. G.; COSTA, D. F. L.; ELER, J. C.; BAROSO, P. C. P; SALIBA, W. A. Estudo da estabilidade química do princípio ativo da dipirona na forma líquida. **Brazilian Journal of Surgery and Clinical Research**. v. 25, n.2, 2019.

HABEKOST, A. The Analgesic Metamizole (Dipyrone) and Its Related Products Antipyrine, 4-Aminoantipyrine and 4-Methylaminoantipyrine. Part 1: Mass Spectrometric and Electrochemical Detection. **World Journal of Chemical Education**, v. 6, n. 3, p. 134-144, 2018.

MIRCO, J.; ROCHA, M. S. Estudo de estabilidade de medicamentos. **Revista Acadêmica Oswaldo Cruz**. n.7, julho-setembro, 2015.

WANCZINSKI, B. J.; SANCHES, D. S.; WOLF, T. G. Estabilidade de medicamentos. **Revista UNINGÁ**, n.12, 2007.