

ELABORAÇÃO DE UM REVESTIMENTO COMESTÍVEL COM ÓLEO ESSENCIAL DE ALECRIM NO TOMATE (Solanum lycopersicum), VARIEDADE SWEET GRAPE

Leticia Mendes da Silva¹, Luiz Gabriel Martins de Oliveira¹, Cristiane Batista da Rocha¹, Natália Conceição¹

¹Instituto Federal de Educação, Ciência e Tecnologia de São Paulo (IFSP) – Campus Barretos. leticia.mendes1@aluno.ifsp.edu.br

Palavras-chave: Revestimento comestível, conservação, tomate sweet grape.

Introdução

O tomate é um alimento bastante consumido no Brasil e no mundo, entretanto, sua perda após a colheita é um problema que ocorre na mesma proporção, devido à alta perecibilidade e à baixa resistência mecânica do fruto até que este chegue ao consumidor. O fruto maduro pode durar aproximadamente uma semana com cerca de 25% a 50% de perdas, já o fruto parcialmente maduro pode chegar até duas semanas com 20% a 40% de perda (COSTA et al., 2022).

Sendo assim, é necessário que maiores cuidados na cadeia produtiva do tomate, bem como na etapa de embalagem deste produto sejam tomados. Neste sentido, considerando desenvolvimento de embalagens 0 derivadas do petróleo caminha em direções opostas quando o tema é sustentabilidade, várias pesquisas têm sido publicadas no intuito de desenvolver filmes comestíveis à base de polímeros naturais adicionados ou não de óleos essenciais; os quais possuem propriedades bioativas, incluindo a atividade antimicrobiana, aumentando, assim, o tempo de vida útil destes produtos, além de atuar como um possível aromatizante natural (SANTOS et al., 2023).

A base para formação dos filmes pode ser aplicada também diretamente sobre a superfície das frutas e hortaliças formando uma película que reveste esses vegetais com uma camada semipermeável com capacidade de reduzir a oxidação de lipídeos e a perda da umidade, das trocas gasosas e do aroma (SCHAEFFER, 2018).

Objetivos

O objetivo do presente estudo foi elaborar um revestimento comestível à base de amido de

milho adicionado de óleo essencial de alecrim para ser aplicado nos tomates da variedade sweet grape.

Material e Métodos

Os tomates da variedade sweet grape utilizados no presente estudo foram adquiridos no mercado local da cidade de Barretos-SP. Os frutos foram selecionados, lavados em água corrente e higienizados por imersão em uma solução de hipoclorito de sódio (COSTA et al.,2022). Em seguida, procedeu-se a pesagem dos mesmos, em quadruplicata, utilizando-se uma balança analítica tanto para as amostras recobertas com a película quanto para as amostras não revestidas (controle).

O revestimento comestível foi produzido de acordo com Moreira et al. (2017) com adaptações. A solução aquosa do revestimento foi elaborada com 3% de amido de milho, 2% de glicerol e 20µL do óleo essencial de alecrim, seguida pela homogeneização e aquecimento em um agitador magnético com aquecimento até obter a consistência de um gel. Após a solução resfriar, atingindo a temperatura ambiente, os tomates foram submersos nesta e colocados em uma superfície plana para a secagem do material de revestimento aderido ao fruto.

Ao formar a película os frutos foram armazenados em temperatura ambiente a fim de simular o armazenamento convencional dos tomates no mercado.

Em seguida, as amostras foram pesadas durante o período de 4 dias, para verificação da perda de massa do fruto também em quadruplicata. A perda de massa foi determinada a cada dia de armazenamento e expressa em porcentagem, calculada por meio da Equação 1.

%Perda de massa
$$\frac{(m_0-m_i)}{m_0} \times 100\%$$
 (1)

Sendo: m_0 a massa inicial (g) e m_i a massa a cada intervalo de tempo (g).

Após a secagem, observou-se visualmente a formação de uma película homogênea sobre os tomates.

No gráfico 1 é possível observar que tanto os tomates sem a película como aqueles revestidos perderam massa em todos os tempos analisados (24, 48 e 72 horas), exceto após 24 horas, quando houve ganho de massa nas amostras com película. Isto pode estar relacionado à massa do próprio revestimento, indicando que houve aderência da película aos tomates, conforme observado visualmente. Apesar da perda de massa para ambas as condições de tratamento (sem e com película) a perda foi menor nas amostras que foram recobertas.

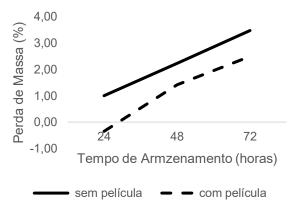


GRÁFICO 1. Perda de massa, em porcentagem, do tomate cereja com e sem revestimento durante o tempo de armazenamento.

De acordo com Costa et al. (2022), a perda de massa está diretamente relacionada à perda de água. Dessa forma, a menor proporção da perda de massa na amostra com película pode estar relacionada à capacidade que a película tem de formar uma barreira aliada à retenção de água liberada pelo processo de respiração e absorção de água do ambiente de armazenamento pela película devido à higroscopicidade do glicerol (BEATRIZ et al., 2011) e /ou à dificuldade da permeação da água pela hidrofobicidade do óleo essencial que compunham a formulação da película.

Quando se observa a diferença da perda de massa entre os intervalos de tempo (Tabela 1), entre 24 e 48 horas, houve uma maior perda de massa, cuja inferência pode ser justificada pela perda de água do próprio revestimento que possuía em sua composição aproximadamente 95% de água.

TABELA 1. Diferença da perda de massa, em porcentagem, do tomate cereja com e sem revestimento entre tempos de armazenamento.

Tratamento -	Tempo de Armazenamento (horas)		
	24	48	72
sem película	1,00	1,25	1,27
com película	-0,35	1,76	1,09

* O sinal negativo representa que não houve perda de massa neste intervalo de tempo e sim ganho de massa.

A perda de massa entre 48 e 72 horas foi menor que a perda entre 24 e 48 horas (Tabela 1), o que pode indicar uma tendência do controle efetivo da perda de água, uma vez que do revestimento atua como uma barreira que reduz a permeabilidade de água e gases retardando o metabolismo pós-colheita dos frutos (COSTA et al., 2022) e, consequentemente, um possível aumento no tempo da vida de prateleira destes produtos que pode se aliar a presenca do óleo essencial de alecrim adicionado à formulação do revestimento. Este óleo essencial possui propriedade antimicrobiana, além de ser antioxidante (FOLLETTO et al., 2023). Para confirmar essa hipótese um acompanhamento por um período mais longo deve ser realizado.

Deste modo, conclui-se que foi possível elaborar um revestimento comestível à base de amido de milho adicionado de óleo essencial de alecrim para tomate sweet grape que mostrou uma tendência na redução da perda de massa que pode contribuir na manutenção da qualidade do tomate grape sweet por um período maior.

Agradecimentos

À técnica de Laboratório Letícia Yuri Nagai pelo planejamento e assistência durante a condução dos experimentos.

Referências Bibliográficas

Beatriz, A.; Araújo, Y. J. K.; de Lima, D. P. Glicerol: um breve histórico e aplicação em sínteses estereosseletivas. **Química Nova**, v. 34, n.2, p. 306–319, 2011.

Costa, M. et al. Conservação pós-colheita de tomatecereja orgânico embalados com filme ativo biodegradável à base de amido e óleo essencial de cravo-da-Índia. **Revista Concilium**, vol. 22, n. 2, p. 387-400, 2022.

Folletto A. G.; Siqueira, M. P. M.; Wolfart, F. O uso do alecrim na conservação dos alimentos: breve revisão. **Revista de Ciência e Inovação**, v. 9, n. 1, p. 1-28, 2023.

Lemos, O. L. et al., Conservação do pimentão 'magali R' em duas condições de armazenamento associada à atmosfera modificada. **Magistra, Cruz das Almas BA**, v. 20, n. 1, p. 06-15, 2008.

Moreira, E. G. S. et al. Utilização de filme comestível na conservação pós-colheita de pimentão 'Magali'. **Scientia Agraria Paranaensis**, v. 16, n. 1, Jan/Mar, p. 120-126, 2017.

Santos, B. et al. Caracterização de filmes sustentáveis para uso como embalagens primárias a base de polímero natural e óleo essencial de ervadoce. **Research Society and Development**, v. 12, n. 3, 2023.

Schaeffer, D. Obtenção de caracterização de biopolímeros a partir de fécula de mandioca e amido de milho. 2020. 46 f. Monografia (Bacharelado em Engenharia Química) - Universidade do Vale do Taquari, Lajeado, 2020.